Dynamically applied loads are balanced by elastic and inertial forces. Given small
plate dimensions (&, < 2), elastic forces predominate. At £, > =, the plate resists only
with inertial forces, and ¢(0) > 1. For short plates (E* < 3), the maximum values of M,
and M, are seen at the center. Here, M, changes slightly (up to 107) along the radial sec-
tion to the value r = 0.6R.. Only at the support does it turn out to be 40% less than at
the center of the plate. With an increase in the radius of the plate, strains begin to be
localized next to the supports. Thus, the maxima of M; and M, are displaced from the
plate's center toward the support. Figure 7 shows the distribution along the plate radius
of quantities characterizing bending elements. Here &, = 7.05.
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MECHANICAL MODEL OF AN ELASTOPLASTIC BODY

A. I. Chanyshev UDC 539.3

It is presently held that the phenomenon of the plastic deformation of solids is based
on the shear or slip of one part of the material over another [1-12]. Despite the agreement
on the nature of plastic deformation, different approaches have been taken to describe the
phenomenon. One school of thought is that plastic deformation is governed by a shearing
process which takes place in a whole fan of slip planes [1-3]. Other investigators [4-12]
believe that such a process occurs only in a finite system of slip planes with a particular
orientation. In [4-8], this system was associated with the set of planes acted upon by the
principle shear stresses. Another set was hypothesized to be composed of equally-inclined
or octahedral planes [9, 10]. As regards macroscopic studies, they do not contradict any of
the approaches taken [3, 5, 13, 14], but they do show that the last-mentioned methods have
certain advantages: the beginning of plastic deformation is described best by the condition
of constancy of the octahedral shear stress (or von Mises condition) {12, 15]; during simple
loading, the "single" curve hypothesis, establishing the dependence of the octahedral shear
strain on the octahedral shear stress [16-18], turns out to be valid. Microscopic studies
undertaken to determine the planes of slip in a body being deformed also have failed to re-
solve the problem of selecting an approach. This is because actual materials are to a known
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degree locally inhomogeneous and anisotropic in terms of ductility properties [19, 20},
while the above-mentioned approaches are phenomenological.

The studies cited already analyze the purely plastic state of a deformed body — the
total strains are divided into elastic and plastic components. However, there have been in-
vestigations [21, 22] which have focused on how a solid is elastically deformed. In parti-
lcular, researchers have posed the question: what is the Poisson effect in the case, for
example, of the tension or compression of a straight rod when no forces act in the trans-
verse direction but strain is still present? Different schemes of deformation have been
suggested to explain this phenomenon. However, no link has been established between the
mechanisms of elastic and plastic deformation. Yet it is clear that they should be interde-
pendent.

The present study has the goal not on setting these two deformation processes in oppo-
sition to one another, but of treating them as component parts of a single process — elasto-
plastic deformation. Such a formulation of the problem makes it possible to take the neces-
sary approach toward the study of plastic strains and to establish a mechanism of elastic
deformation of solids which is continuous and which naturally changes into the mechanism of
elastoplastic deformation.

We construct a mechanical model of a solid undergoing deformation. The model's struc-
ture is similar to that of Rubik's cube — its component elements are rigid nondeformable
blocks connected by elastic springs. Tension or compression of the springs causes an in-
crease or decrease in the volume of the model of the medium, while slip of the blocks rela-
tive to one another results in a change in the shape of the model. 1In the case of small
strains, the model is deformed in accordance with the normal Hooke's law. In the case of
more substantial strains, it satisfies the generally-accepted laws of plastic deformation:
its volume changes elastically, while the plastic shears are independent of the hydrostatic
pressure. In essence, for any external load the model undergoes only two types of deforma-
tion — simple shear and extension. This makes the model self-consistent, since simple shear
and extension take place without manifestation of the Poisson effect.

To construct a mechanical model of a medium, it is necessary to specify its structure
and mechanism of deformation. Chernov—Luders lines have been seen in many tests on the sur-
faces of tested materials. Their appearance is linked with the attainment of appreciable
plastic strains in the specimen [23, 24]. Chernov-Luders lines are traces of surfaces of
strain localization that are formed in the body. Intersecting one another, these surfaces
impart a blocklike structure to the medium. The blocks in specimens slide over one another
and break up due to the formation of new planes of weakness in the material [25]. The empir-
ically-observed phenomenon of strain localization and its characteristics best suggest the
structure of the model of the medium and the mechanism of its deformation. The model should
consist of blocks whose main mechanism of deformation is slip of the blocks over one another.
This conclusion was reached in [4-6] in studies of the plastic deformation of initially uni-
form and isotropic materials.

Several methods have been proposed for determining the block structure of strain-harden-
ing materials: one of them identifies this structure with the grid of characteristic lines
of an ideally plastic body [26], while others have devised special criteria for strain lo-
calization [23, 27, 28] which in some manner conform to the condition of hyperbolicity of
the main system of differential equations. According to the hypotheses in [4-6], the blocks
in a uniformly deformed strain-hardening material are cut by planes on which the shear
stresses are maximal and exceed the elastic limit of the material. In all of the above-cit-
ed studies, the blocks are deformed elastically and the plastic-strain components are formed
by the slip of some blocks over others.

Let us critically examine the studies [4-8, 26]. First of all, it should be noted that
the block structure of the model of the medium is merely a hypothesis. It has not been
found to be valid on the basis of study of the governing relations of the medium. It is
assumed that for its construction it is sufficient to limit oneself to analysis of the
stress state, without involving these governing relations. Generally speaking, there may be
no time correspondence between the relations and the slip planes (even if these are the
planes of action of the maximum shear stresses). In thissense, it is preferable to consider
the conclusions reached in [23, 27, 28], where investigators proposed strain localization
criteria that take into account the elastoplastic properties of the medium. However, these
criteria also ultimately yield little information.
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Calculations show that the type of system of basic equations that describes strain-hard-
ening materials is elliptic and, in accordance with the above criteria, no strain localiza-
tion takes place. Calculations have been performed using the classical theories — the
strain theory of plasticity and the theories of plastic flow with the Tresca and von Mises
yield conditions. The results were the same in every case. This fact has stimulated many
researchers to reexamine the basic principles underlying the construction of the governing
relations of the theory of elastoplastic strains and to change them. In particular, it has
been suggested that the principle that plastic strains are of a gradient character be aband-
oned [27, 29]. The resulting systems of differential equations become hyperbolic for cer-
tain values of the input parameters [28, 30], but the governing relations in these systems
have an intrinsic contradiction — one of them consists of the absence of a continuous transi-
tion from the region of additional plastic loading tec the region of elastic unloading. At
the same time, the fact of strain localization or the existence of a block structure are
overlooked even by the classical theories and are expressed not in the basic system of dif-
ferential equations, but through the governing relations of the medium — which reflect the
behavior of its mechanical model with uniform deformation. It was concluded later in [4-8]
that the plastic shears on slip planes (more accurately, their increments) depend not only
on the natural shear stresses but also on the shear stresses in other systems of planes.
This situation was explained in [4, 5] as being the result of anisotropy of the plastic
state. In fact, it only legitimizes the paradox due to the Poisson effect. A third obser-
vation pertains to the fact that plastic deformation of the medium is considered apart from
elastic deformation.

Proceeding on the basis of the same experiments involving strain localization (these
tests having shown how materials are deformed in general, not just plastically), we propose
that the elastic deformation of a medium is also based on shear or elastic (reversible) slip
of one block over another. If we assume that elastic slip of the material occurs on planes
with the normal n; and that plastic slip occurs on planes with the normal n,, , where ng=4n,,
then one readily comes up against a contradiction: no matter how great the load, elastic
shear can never change into plastic shear, plastic shear will never be preceded by elastic
shear (no matter how small the elastic strain). To avoid such contradictions, it is neces-
sary that the process of plastic deformation of the medium be compatible with the elastic
mechanism. Meanwhile, the slip planes or the block structure of the medium must be deter-
mined by studying its elastic state [31, 32, 12].

Considering the above remarks, we hypothesize that the block structure in an initially
homogeneous and isotropic material be cut up not in the plastic state — as proposed in [4-8,
23, 28] — but even before the formation of elastic strains in the material.* The situation
is roughly as follows. First a block structure is formed in the material under the influ-
ence of the applied forces. Then the blocks begin to move relative to one another, and the
material is deformed as a result of their motion. In the mechanical model of the medium,
the blocks are rigid and nondeformable. Reversible movement of the blocks corresponds to
elastic deformation of the medium, while their irreversible movement corresponds to inelas-
tic deformation. The block structure is influenced by the stress state — with rotation of
the principal axes of the stress tensor, the old block system is closed up and filled with
material, forming a new system. The block structure also depends on the structure of the
medium itself. Thus, we will assume that is a priori unknown. Keeping in mind that the
choice of the latter will influence the governing relations of the medium in both the elas-
tic and plastic regions,t we will attempt to solve the inverse problem — establish the block
structure from known governing relations of the medium, such as Hooke' law.

To solve the above-stated problem, it is necessary to consider the question of the mech-
anism responsible for deformation of the block structure. We present the following situa-
tion. Let there be a certain set of rigid nondeformable blocks which are somehow connected
to one another (Fig. la). Having subjected this system to a rigid rotation, we apply normal
¢ and shearing v forces to it. Under the influence of the forces ¢ and 1 the given sys-
tem may generally be deformed as shown in Fig. 1b-d. Let us take a more detailed look at
the schemes of deformation that have been discussed here. In the first case (Fig. 1b), the

*This hypothesis conforms to a mechanical model of the medium which is a phenomenoclogical
reflection of the actual material.
+The block structure can thus be regarded as a characteristic of the material.
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shearing force t causes the blocks to slide over one another by a certain relative amount ¥
(Fig. 2b). Under the influence of the force 6 they are separated in the orthogonal direc-
tion by a relative amount &£ so that an elastic connection is formed between them. We speci-
fy the latter through the relation & = ¢/K, where & characterizes the strain corresponding
to simple extension [33] in the direction =, The value of K (a material constant) is deter-
mined by the stiffness of the elastic springs connecting the blocks (Fig. 2c). 1In the se-
cond case (Fig. lc), slippage of the blocks is followed by the penetration of one block by
another. In the third case (Fig. 1d), the blocks are separated so that nothing connects
them — the material is divided into separate parts.

What distinguishes the scheme of deformation in Fig. 1b from the schemes in Fig. lc and
Fig. 1d? First of all, here each force T and ¢ causes only its natural strain, i.e., there
is no Poisson effect. Also, the block structure remains compatible connected after deforma-
tion, which is guaranteed by the condition of elastic change in the strain e: this structure
can be further deformed. By the mechanism of deformation of the block structure, we mean
this scheme of deformation (Fig. 2). The relation ¢ = o(e) is linear, and curve of t = 1(y)
for elastoplastic deformation is shown in Fig. 3.

This curve reflects the dry friction between particle-blocks of the material as they
slip past one another. This was noted in [34]. The fact that the curve has the same form
at 0 > 0 (tension) and ¢ < 0 (compression) for many metallic materials suggests that forces
associated with internal interaction of the particles of the material (interatomic, inter-
molecular, interstructural forces) play a more important role in the slip planes than does
6. The attraction of the particles to one another due to these forces is much greater than
the tension or compression of the particles by the forces ¢ from external loading. We will
use N to denote the contribution of the interaction forces to the pressure on the slip
planes. Then the total pressure is equal to N + 6. Let the roughness of the surfaces of
sliding blocks be determined by the friction coefficient kgp. We will examine the plastic
deformation of the material. For plastic deformation to begin, it is necessary that the
shear stress on the slip planes exceed the friction force, i.e., we must have® T 2 kfp(N +
o). It follows from this that for |Nl > |ol and kar0| « 1, the curve v = t(y) will actu-
ally be independent of o. Meanwhile, kf N can be identified with the elastic limit of the
material tg = kfN. It is not hard to see that due to the surface roughness of the sliding
blocks, the material also undergoes elastic deformation. Before the blocks undergo plastic
slip, the different types of projections along their contact surfaces are stressed, and
their deformation determines the elastic deformation of the medium in shear.

The following question arises: if the diagram t = t(y) reflects dry friction between
particles of the material as they slip, then why is this accounted for twice in theoretical
constructions? This was done, for example, in [8, 11, 35].f%

Now let us turn to finding the block structure or slip planes in an initially uniform
and isotropic medium. We subject a specimen of this material to uniform loading. Let the
loading be such that the material is deformed elastically. We determine the principal axes
of the stress tensor and designate them as 1, 2, 3. In the coordinate system connected with
these axes, we construct the stress vector p and strain vector q on an arbitrarily oriented
plane with a unit normal n. According to the Cauchy formula, p = o286 -~ O.70e, -+ Gom5eq (ny,
n,, n, are direction cosines of n, e, €, e; are unit vectors of the coordinate system 1, 2,
3), while q =g, + £,15€; -+ €7%€;. The strain vector q characterizes the relative displace-
ment of the plane with the normal n when its rigid rotation is fixed.

*In the orthogonal direction M + & = (N + ¢)/K (the strain M is caused by the force N). As
suming that M = N/K, we obtain & =g¢/%.

+To verify this, it is sufficient to set the friction angle ¢, = 0 in [8, 11, 35] and exam-
ine the elastoplastic diagram in the coordinates shear stress—shear strain.
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Fig. 3

We will examine the projection of these vectors on the normal n and in the direction
tangent to the plane. For the normal components we have

. 2 Jd 2 3 ;
Gn = PR = Oyny + Oa¥y + Galiyy € = Qo0 == &7y - £,n) + egns. _ (1)

The tangential projections are determined by the equalities
T =P — Op, Vn =9q — 8, (6, == 6,0, g, = g,n). (2)

For convenience, we introduce the notation [4] Ty, = (0, — 04)/2, 0 = 0, — (0, + 045)/2.
Then

5 »
Ty = Tyg g0, — nyeg — (0 — n2) 0] -+ ayn, (€, — nom), (3)

Now we use the relations of Hooke's law. Having inserted them into (1)-(2), we express
the normal and tangential components q through the projection p:

Snsi—_E%v—O'n‘i‘%[Tla(ni—"ng)‘i'cé(ng_%)]’ ?n=;—: (4)
We attempt to select planes in the material which first of all are independent of the method
of specification of the forces o,,T;, i.e., are independent of o,, T,;, 0,' and their ratios.
Secondly, the planes should be chosen so that the normal strain &, on them is caused only by
the normal force 6,, and the shear strain ¥, is caused only by the shearing force 1,. This is
how we want to approximate the scheme (Fig. 2) we adopted earlier. Comparing (3) and (4),
we become convinced* that the sought planes coincide with the planes equally inclined to the
axes 1, 2, 3. There are eight such planes, and together they form a regular octahedron [9,
36]. Hooke's law has the following form for the octahedral planes

e, = 0,/K, 7, = 1,/(2u). (5)

Equations (5) conceal a certain ambiguity — it can be assumed that the forces 6, cause trans-
verse strains, but it can also be hypothesized that no such strains are formed. In light of
the duality of the situation and the desire to avoid the paradox caused by the Poisson ef-
fect, we assume that the normal forces o, in system {5) do not cause transverse strains. In
this case, the first equation of (5) determines simple extension, while the second deter-
mines simple shear. It follows from a comparison of the scheme (Fig. 2) and the formulas
(5) that the block structure of an initially uniform and isotropic medium should be formed
by octahedral planes. Since Eqs. (5) are valid in each of the four families of octahedral
planes, it is natural to expect that the block structure will be cut up into four systems of
octahedral planes and that in each such family the material will be deformed independently
and in accordance with the scheme in Fig. 2.

As an illustration, Fig. 4 shows a diagram of the tension of a rectangular beam in
plane strain. 1In contrast to the previous case, the material here has been divided not into
octahedral figures but rectangular prisms. The generating planes of the prism are parallel
to the planes of action of the maximum shear stress. The same scheme is applicable to the
deformation of an initially uniform and isotropic medium {24]. Plane strain is a con-
strained type of deformation [5], and the Hooke's law relations for plane strain become the
equations

*At n, = 0, n, = 0, n; = 0, the strain ¢, depends on the normal stresses on other planes.
For &, to be independent of 7, at n; # 0, n, # 0, ny # 0, it is necessary that the direc-
tion cosines of the normal satisfy the equations n;?2 — n,? =0, n,2-1/3 =0, n,;?2 +n,%2 +
ny? = 1. It follows from this that n, = + 1/1/3, n, =t 1/V3 n, = = 1/ V3
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& + & = (0 + o)k, &y — g5 = (0, — 0,)/(2), &5 = 0,/C. (6)
If we set C = » in these equations (if we assume that the material is rigid in the direction
2), put k' = K/(1 + v}, and always maintain o, = v(o; + 0,), then we will immediately have

the Hooke's law relations for plane strain. The character of Egs. (6) reflects the prisma-
tic structure of the medium. The first equation in (6) reflects the elastic change in e, on
the planes of action of the maximum shear stress (8, == ¢,/k’), the second equation reflects
simple shear, and the third reflects simple extension in the direction orthogonal to the
plane of the figure (it is equal to zero, since C = =), The prisms slide along one another
— first in one family of planes and then, by virtue of the pairing of the shear stresses,

in another family. As a result, we obtain the pattern of deformation shown in Fig. 4.

This example shows that in the case of constrained deformation, the structure of an ini-
tially uniform and isotropic material may be rearranged — rectangular prisms are formed in-
stead of the above-mentioned octahedra. Both cases may be characterized by the same form of
the curve 1t = 1(y), which characterizes the resistance of the medium to elastoplastic shears.
This hypothesis must be verified experimentally.

Now let us return to analysis of the Poisson effect. As can be seen, Egs. (5) and (6)
do not include the Poisson effect. Then how is it to be manifest? In the case of shear,
there is not only a change in the angles of an element of the medium (Fig. 5), but a de-
crease in one of its diagonals and an increase in the other. The first causes extension of
the material, the second causes contraction. In shear, both of these phenomena occur to-
gether (one does not exist without the other). It follows from this that the Poisson effect
is of a purely geometric character. It is formed exclusively as a result of shear, although
it is not manifest during the shearing process itself.

The question of the block structure of an initially uniform and isotropic medium has
thus been resolved. In the general case, the mechanical model of a uniformly deformed solid
consists of rigid nondeformable blocks formed by the intersection of octahedral planes. The
model of the body experiences only two types of strain — simple shear and extension.

Now let us establish the character of deformation of the mechanical model on the basis
of existing theories of elastoplastic deformation of materials. We will take the strain
theory of plasticity. In accordance with this theory, the mechanical model of a medium will
be deformed in accordance with the rule

&p = O-n/lfv Yn = Tn/(?‘.u“c)v Mo = HC(Tn)' (7)

The plastic shear 9. depends on the value of T. reached on the octahedral planes and occurs
in the direction of its action. Simple extension takes place in the directions normal to
the octahedral planes. The yield condition of the model T, = const coincides to within the
numerical multiplier with the von Mises condition.

Now let us examine the theory of plastic flow with the von Mises condition. In accord-
ance with the latter, the following is valid for the slip planes of the mechanical model

g, = Gn/KE AVZ = Al e (8)

The increment of plastic shear Ayn is formed in the direction of T . As before, simple ex-
tensions occur in the directions normal to the slip planes.
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The slip planes in the mechanical model are octahedral planes. A change in the princi-
ple axes of the stress tensor leads to healing of the old system of slip planes and the form-
ation of a new system in which the equations describing deformation again have the form (7)-
(8). Thus, the theories being analyzed do not consider the loading history and they do not
account for the old system of planes in either elastic or plastic deformation.

Let us turn our attention to the main relations of the theory of plastic flow with the
Tresca yield condition. In accordance with this theory, as before, e, = 6,/K, and elastic
simple extension occurs along normals to the octahedral planes. However, the increment in
the plastic shear strains takes place not along the shearing force T, but along its projec-
tions in preassigned directions: in the state of incomplete plasticity, along the vector
[see (3)] a = (V32)(me, — nges), lal =1, in the state of complete plasticity, along « and
the direction formed by a *60° angle from « . .

There is nothing significant about these directions in the octahedral planes. Instead,
we can take other directions — such as those determined by the yield condition in [34].
Here, a hexagon is replaced by a dodecagon. Thus, the Tresca condition in the model is a
linear approximation of the von Mises condition, and the theories based on the former are
approximations of corresponding theories constructed on the basis of the von Mises yield con-
ditiom.

Different arguments are made to explain the use of the Tresca condition in elastoplas-
tic models. 1In particular, a volumetric stress-strain state is represented in the form of
a superposition of three plane strains [5, 7]. However, there is one inherent contradic-
tion to this approach. We will discuss it briefly. Let there be three plane-strain states:

s; — s; = (0, — 0,)/4, 81 + s; = (o, + 0,)/8, s; = 0; (9)

gf — ey = (0, — Og)/A, &} 85— (0, + /B, & =0;

8/2” - 5:3’ = (0, — 03)/4, 8;’ -+ 8;” = (0, + 03)/B, 8:.” =0

(1, 2, 3 are the principal axes of the stress tensor and A and B are the as-yet-unknown ri-
gidity moduli of the material). We will assume that all of these states occur independently
of one another. We designate the total strains as ey = g' + e + e'" (k =1, 2, 3). To
select the parameters A and B, we need to connect the strains ej with the stresses associat-
ed with Hooke's law. Having performed the necessary operations, we obtain

1/4 = (1 + 29)/Q2E), 1/B = (1 — 2v)/(2E). (10)

The volumetric stress-strain state is decomposed into three plane strains. Each of these
states has prismatic structures, simple shears, and extensions. The difference between the
states of incomplete and complete plasticity is fairly clear [4-8]. Nonetheless, this de-
formation scheme is inconsistent. If additional orthogonal loading is done from the state
(9), then by Hooke's law we should have

Aeyy = 1_—15?—_«; Atyy, Agyy= i‘g’v_ Atyg, Aeyy = '1‘%2‘ Aty
A contradiction develops from this. On the one hand, the shear modulus A = 2E/(1 + 2v) by
virtue of (9)-(10), while on the other hand the same equations lead to A = E/(1 + v). Thus,
the material is nonisotropic even though it was initially supposed to be isotropic. Since
the material cannot be deformed elastically according to Egqs. (9)-(10), we find that, in
this scheme, plastic deformation [5, 7, 35] will not be preceded by elastic strain.

Tests involving simple shearing of materials (see Fig. 2b), such as the torsion of thin-
walled cylindrical tubes, are of fundamental importance for constructing a mechanical model
of a medium. They can be used to determine the characteristic function of simple shear T =
t©(y), where the measured value of y is shown in Fig. 2b and includes a component of the
rigid-rotation vector [33]. Also, these tests, when conducted to the point where strain
localization is visually observable, give information on the orientation of the slip planes
in simple shear. If the slip planes coincide with the direction of the applied shearing
force 1, then the above mechanical model is valid. Otherwise (see [24] for example), the
investigated isotropic material needs to be examined as a rock. In this case, it is recom-
mended that the mechanical model and constitutive equations derived in [10] be used to des-
cribe it.
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We make one more important observation. As is known, the maximum shear stress is also
characterized by the plane in which it acts. Nevertheless, by virtue of (3), the difference
(0, — 03)/2 goes into the determination of the shear stress in any other planes. Thus, it
is not identical to the maximum shear stress. On the basis of (1)-(3), the quantity e,' =
€, — (g; + €5)/2 [4] plays the role of the projection of the shear strain. Finally, the
block structure of an anisotropic material is established from analysis of the natural elas-
tic states [31, 32], as was suggested in [12].
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CRACK GROWTH IN METALS AT ELEVATED TEMPERATURE

A. G. Cherepanov and G. P. Cherepanov UDC 539.375+539.376

Creep is the capacity of all solids to undergo irreversible deformation under constant
loads due to the thermal motion and directional migration under load of the main sources of
such deformation: inclusions, voids, dislocations, and microcracks. The latter, coalescing
at the final stage of creep, form a macrocrack which separates the structural element.

Creep in metals usually beccmes noticeable at temperatures greater than one-third of the
melting point (in K).

The phenomenological approach to creep is semi-empirical and is based on many addition-
al assumptions regarding irreversible (plastic) strains that have been justified on the ba-
sis of experiments for specific materials under certain conditions [17.

The new approach being taken to fracture mechanics in creep and plasticity consists of
the following: the material is considered to be linearly or nonlinearly elastic, while the
sources of irreversible strain are examined in explicit form [2, 3]. In this approach,,
irreversible strain is calculated as being the result of the nucleation, movement, and
growth of these sources, while fracture is represented by a certain calculable critical mo-
ment of instability of plastic strain. It is possible to examine different deterministic
and statistical systems of sources by using the methods of the theory of diffusion and mi-
gration to study their motion and development [2, 3].

Since the 1970s and the publication of [4], the growth of creep cracks in metals has
been subjected to massive experimental study within the framework of classical fracture mech-
anics on the basis of stress intensity factors [5] and invariant energy integrals [6-18].

As was shown in [19], the 8g-concept in the Leonov—Panasyuk-Dugdale model follcws from
the general energy-based T'.-concept. The analog of the dg-concept for linear viscoelastic
materials was developed in [20]. In this case, the .- and Sg-concepts differ.

In the theory of elasticity, invariant integrals were first found by the Maxwell method
by Eshelby in 1951. The basic invariant energy integral (more general than Eshelby's) used
as a criterion in the theory of fracture was obtained directly from the conservation law
in [6] for an arbitrary solid. Obtained with it was the solution of the problem
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